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Zusammenfassung

Die videoassistierte minimalinvasive Chirurgie ist dank diverser Vorteile immer dann, wenn es
möglich ist die erste Wahl im Operationssaal. Durch die Verwendung einer Kamera und fil-
igraner Werkzeuge entstehen daraus viele intraoperative Vorteile für den Patienten. Zusätzlich
lassen sich riesige Datenmengen in Form von Bildern und Videos erzeugen. Die gewonnenen
Daten sind sowohl für die Lehre als auch für die Evaluation von Operationsverläufen sehr
Wertvoll. Außerdem können auch für das trainieren von Deep Learning Modellen verwendet
werden. Unterstützung in der intraoperativen Entscheidungsfindung, Risikoeinschätzungen
oder Beurteilungen der Performanz des Operateurs sind nur einige von unzähligen daraus re-
sultierenden Möglichkeiten.

Deep Learning Algorithmen arbeiten mit Bildern die meist aus drei Farbkanälen aufgebaut
sind. Ob die Farbräume, die den Kanaelen zu Grunde liegen einen Einfluss auf die Performanz
eines modernen Deep Learning Modells zur Klassifizierung haben ist Teil dieser Untersuchung.

Da Rot-Grün-Blau aktuell der Standardfarbraum im Deep Learning ist wird er in diesem Ver-
such als Vergleichswert verwendet. Der zweite Farbraum ist Hue-Saturation-Value.

Trainiert und evaluiert wird auf dem öffentlichen verfügbaren Cholec80 Datensatz. Dieser
enthält gelabelte Operationsvideos von insgesamt 80 laparoskopischen Cholecystektomien.
Im Rahmen der Arbeit werden einfache Modelle in verschiedenen Farbräumen trainiert um
einzelne Werkzeuge zu klassifizieren. Im Anschluss werden die erzielten Ergebnisse verglichen.

Im Laufe der Untersuchung zeigte sich, dass die Farbcodierung einen Einfluss auf die Per-
formanz hat. Trotzdem erzielte Rot-Grün-Blau die besten Ergebnisse. Gemessen an der
Tatsache, dass dieser auch der meistgenutzte Farbraum ist, ist das Ergebnis zufriedenstel-
lend.
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Abstract

Thanks to various advantages, video-assisted minimally invasive surgery is the first choice in
the operating room whenever possible. The use of a camera and delicate tools results in many
intraoperative advantages for the patient. In addition, huge amounts of data can be generated
in the form of images and videos. The data obtained is very valuable for teaching as well
as for the evaluation of surgical procedures. Moreover, it can also be used for training deep
learning models. Support in intraoperative decision making, risk assessments or evaluations
of the surgeon’s performance are just a few of countless resulting possibilities.

Deep Learning algorithms work with images that are mostly composed of three color channels.
Whether the color spaces underlying the channels have an influence on the performance of a
modern Deep Learning model for classification is part of this investigation.

Since Red Green Blue is currently the standard color space in Deep Learning it is used as
a benchmark in this experiment. The second color space is Hue-Saturation-Value.

Training and evaluation is performed on the publicly available Cholec80 dataset. This con-
tains labeled surgical videos of a total of 80 laparoscopic cholecystectomies.In the context
of the work, simple models are trained in different color spaces to classify individual tools.
Subsequently, the obtained results are compared.

During the course of the study, color encoding was shown to have an impact on perfor-
mance. Nevertheless, Red Green Blue achieved the best results. Measured against the fact
that this is also the most used color space, the result is satisfying.
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1 Introduction

In many areas of everyday surgery, video-assisted minimally invasive surgery is no longer just
an alternative to open surgery, but the standard. Instead of one large incision, several small
ones are made at tactically appropriate locations. These much smaller wounds inflicted on
the body heal faster and better. The camera used in minimally invasive surgery has many
other advantages. With the help of machine vision and learning, it is possible to assist the
surgeon postoperatively and even intraoperatively. For example, convolutional neural
networks (CNN) can be used to assess which phase of surgery the surgeon is currently in,
how safe it is to make an incision in the currently visible tissue, or how experienced the
surgeon is as such. Postoperatively, the acquired images can be used to further train existing
models or to evaluate the course of an operation and thereby teach students or
inexperienced surgeons. By doing this machine vision proves to be of a big importance a
safe and future-oriented surgery.

In order to take advantage of all of the above and countless other benefits, it is important
that the CNN can work as effectively as possible with the image data from the surgeries.
There are lots of performance influencing factors for machine learning like preprocessing and
normalization of given images. In this context, the encoding of the image, e.g. the color
space, could impact the classification. Whether and how big this impact is shall be
investigated in this thesis.

1.1 Motivation
When thinking about optical perception, colors play a major role in addition to shapes,
distances and sizes. It doesn’t matter whether the field of vision is that of an animal, a
human being or a machine. Therefore, it makes sense to investigate their influence on the
accuracy of models for object classification.

In everyday life, when taking a photo, while watching a film or working on the computer,
there are different color spaces which are used to represent different things. Red Green Blue
(RGB) is the most commonly used color space in the field of machine vision or deep
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learning. Although Hue Saturation Value (HSV) is preferable because it separates
chromaticity from luminance (1). In addition it was shown that HSV color space perfoms
better when it comes to finding surgical tools (2). State of the art classifiers take images
color encoded in RGB into training without any transformations (3). Images obtained from
videos of surgical procedures are particularly striking for the frequency of red colors. Thus,
the color red can be found in them in all imaginable nuances. From the delicate pink of the
colon to the strong red of the blood and the brownish red of the liver (cf. figure 1.1). Of
course there are also other colors in the abdomen. However, colors like blue or black usually
appear only in the form of instruments or sutures within the body.

Figure 1.1: Overview of the abdomen showing the colon (A), the gallbladder (B), the liver
(C), the omentum majus (a structure of fat and connective tissue) (D) and a tool (grasper)
(E).

Considering that HSV achieved better results than RGB when using only traditional
computer vision techniques (1). Therefore, in the context of this work it shall be
investigated whether it is possible to make the tools more visible to the classifier with the
help of color encoding. In addition, whether the normalization, adapted to the color space,
has further influence.

1.2 Scope
The aim of this work is to investigate a potential performance improvement of a classifier for
surgical instruments. Two possible color spaces are considered for this purpose. RGB as
current standard space and HSV as alternative. Furthermore, the datasets are preprocessed
differently depending on their color spaces.
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Afterwards, the performance of the different classifiers is examined with respect to their
AUROC values. Thereby, the color spaces and the different preprocessing steps are also
discussed.
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2 Background

The Cholec80 dataset (4) is used as a benchmark for the instrument presence detection.
The classifiers are trained and evaluated on this dataset. For comparison and evaluation of
the calssification performance the AUROC metric is used.

2.1 Deep Learning
Deep Learning is a special method of data processing and belongs to machine learning. This
method uses artificial neural networks (ANN) to process large amounts of data. (5) For this
work, a convolutional neural network (CNN) was written. A CNN belongs to the ANNs. The
special thing about them is that they have one or more layers to perform a convolution of
the given images. When an image passes the convolutional layers, the model recognizes
coherent pixels. When an image passes through an ANN of a deep learning model, the model
recognizes similar pixels in the first layer. Assembles them into features as it passes through
the following layers. In this way a model learns which shapes or structures can be used to
classify the given image. (6) An CNN consists of many processing units, the neurons, which
are arranged in layers and connected linearly or non-linearly. Each has an input layer, several
hidden layers and an output layer. Between those layers the data gets processed by different
operations. Figure 2.1 shows a simple example of an ANN containing

• an input layer with three neurons

• two hidden layers with each eight neurons

• an output layer with one neuron

The number of layers and neurons can theoretically be expanded infinitely.

2.2 Cholec80 dataset
This dataset consists of 80 videos showing laparoscopic cholecystectomies performed by 13
different surgeons. A cholecystectomy is a professional term meaning the removal of the
gallbladder. Figure 1.1 and 3.1 show some frame taken from this dataset. Laparoscopic
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Figure 2.1: Simple exemplary representation of an artificial neuronal network. It
contains an input layer, two hidden layers and an output layer.
(This figure was created using http://alexlenail.me/NN-SVG/index.html)

means that instead of a large incision several smaller ones are done. In those smaller
incisions an optic connected to a camera and the tools need to perform the procedure are
inserted to the abdomen. The creators of this dataset have also given tool presence labels
set at 1 frame per second. A tool is considered present if at least half of its tip is visible in
the frame. Furthermore it contains labels for the phases of the procedure done by a senior
surgeon. This dataset contains eight different tools which are grasper, hook, clipper,
irrigator, scissors, specimen bag, bipolar forceps and cotton swab. Beneath those labels it
also contains a labeling of the surgery phases at 25 fps. (7)

2.3 Color Spaces
A color space describes the range of all displayable colors in a color model. Depending on
where colors are represented or perceived, different color spaces are needed. It is possible to
convert between the different color spaces. For example, the opsines of the human eye
perceive colors in the color spectrum Red Green Blue (RGB). Images on monitors are
displayed according to the same principle. In order to be able to print those images in
accurate colors, they must first be converted into the color space Cyan Magenta Yellow
Black (CMYK).
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Figure 2.3: Cutout of the spectrum of light. The numbers on at the bottom show the
wavelengthes of the light. The color bar above those numbers shows the colors that the rods
in the human eye sense.
(Adapted from wikimedia commons, Authour: Spigget, File:Rendered Spectrum.png, CC BY-
SA 3.0))

Red Green Blue

RGB is an additive color space based on color perception by the rods in the human eye.
These are able to perceive light with wavelengths from about 380nm to about 750nm
(Figure 2.3). Beeing an additive colorspace means that all colors belonging to this space can
be formed by adding the three primary colors. This color space can be well represented as a
cube in a three-dimensional coordinate system as shown in figure 2.2. Each axis represents
the degree of saturation of a different color. In the coordinate origin is the color black and in
the opposite corner is white.

Figure 2.2: RGB colorspace displayed as cube. This example shows the three color
channels red, green and blue in a three dimensional coordinate system as well as the additive
behaviour of the color space.
(Adapted from wikimedia commons, Authour: Datumizer, File:RGB color solid cube.png, CC
BY-SA 4.0)

Hue Saturation Value

The color space Hue Saturation Value (HSV) is formed with the three mentioned channels.
The special feature of this color space is that the Hue channel is circular. Unlike RGB, HSV
is therefore represented more as a cone (Shown in Figure 2.4) or cylinder. An advantage of
this color space is that a color is determined only by an angle in the hue channel. The
saturation channel gives information about how pure a color is. The value channel in turn
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shows the darkness level of the color.
From this structure of the color space results the advantage that coherent areas can be
recognized better as such independent of any better or worse illuminated areas. Such
variations in illumination are more likely to affect the saturation and value channels.

The color spaces RGB and HSV can be linear transformed into another. Python has got
different frameworks performing this. In this thesis cv2.cvtCOLOR() is used.

Figure 2.4: HSV color space displayed as cone. This example cone shows the circular
structure of the hue channel.It also displays the value and the saturation channel.
(Adapted from wikimedia commons, Author: Datumizer, File:HSV color solid cone.png, CC
BY-SA 4.0)

2.4 Evaluation

2.4.1 Confusion Matrix

A confusion matrix like the one in figure 2.5 evaluates the performance of a classifying
model. Therefore it compares the ground truth labels with the predicted ones. It is a square
matrix whose size depends on the number of possible classes. A binary classification as done
in this thesis results in 2x2 matrices, Three possible classes would result in 3x3 matrices and
so on.

The rows of a confusion matrix represent the actual labels while the columns represent the
predicted ones. Therefore, in the example matrix shown each row and column got a zero or
a one as their index. TN in the first cell stands for true negative. This means, that the
classifier predicted zero and that came out to be true as the ground truth label said the
same. TP on the other hand means true positive. The classifier predicted one and that
prediction was correct. FP means false positive and FN false negative. In both cases the
prediction the classifier did, whether it has been one or zero, was found to be false.
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Figure 2.5: Example confusion matrix containing arbitrarily values for explanatory and
illustrative reasons.

The numbers underneath those four abbreviations tell the total amount of predictions
belonging to each category and their share in percent. Usually the color of a cell gets darker
when the number of predicitions belonging to that cell rises. Therefore, simply spoken, the
aim is to get the diagonal of the matrix as dark as possible by reaching lots of TP and TN
scores.

2.4.2 Receiver Operating Characteristic (ROC)

The Receiver Operating Characteristic Curve is a metric that allows the evaluation of binary
classification problems. It plots the True Positive Rate or Sensitivity ( TruePositive

TruePositive + FalseNegative )
on the Y-axis against the False Positive Rate (1 − TrueNegative

TrueNegative+FalsePositive ) on the X-axis
(Figure 2.6). This is done on different thresholds for the y score.

The y score in this thesis is the probability that an image belongs to a class. It has a
minimum value of zero, which means the classifier thinks the image does probably not
belong to the class and a maximum value of 1 which means the classifier is absolutely sure
the image belongs to the class we are interested in.

Figure 2.6 shows a simple and explaining example of a ROC curve. The red dashed line
marks a classifier that is not able to classify. An ROC curve showing a graph close to that
line is probably just randomly guessing the classes. The more the graph moves to the left
and the top the better it is at classifying. Therefore the blue point marks a perfect
classifier.

By doing this the ROC helps by facilitating the decision-making process regarding a
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threshold value.

Figure 2.6: Example ROC curve showing properties of an ROC curve giving examples of
their interpretation.
(Adapted from wikimedia commons, File:Roc-draft-xkcd-style.svg, CC 0)

2.4.3 AUROC curve

Auroc is the abrevation for Area Under the Receiver Operating Characteristic. This metric
calculates the area under the curve of ROC. It outputs a scalar as the result of the
calculation. Its value range is between zero and one. A classifier that only makes correct
classifications achieves an AUROC value of one. This perfect classifier is market with the
blue dot in figure 2.6. A score close to zero on points out, that the classifier guesses the
wrong way around. It would, for instance classify a present tool as absence and an absence
tool as present. A classifier randomly guessing the the classes (red dashed line in figure 2.6)
would reach an AUROC score of around 0.5.

Summarized the AUROC curve evaluates the performance of a classifier independent of the
threshold and returns a scalar between zero and one. Thereby it shows whether and how
accurately a model is able to distinguish between classes.

2.5 normalization
Normalizing images in a dataset is an important step in preprocessing (8). After a dataset of
images is normalized, the values of the pixels should be centered around zero and have a
standard deviation of one. This is achieved by subtracting the mean value and then dividing
the standard deviation:

valuenormalized = valueunnormalized − meanall_values

stdall_values
(1)
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Normalization helps by bringing different values of datasets to one scale to make them
compareable. Furthermore, since neural networks execute the dot product for both the
forward and backpropagation, non-normalized pixel values can become extremely large.
Normalizing the pixel values of images of a dataset correctly can reduce the computation
time significantly. The normalized images are normalized with respect to their pixel values.
For the human viewer, however, the resulting images appear unnatural in their coloring like
shown in Figure 2.7:

• (A) unnormalized image in the RGB color space. It only got resized.

• (B) normalized image in the RGB color space which got also resized. It looks over-
and underlit at the same time.

Figure 2.7: Comparison of normalized vs non-normalized image. (A) Non normalized
but resized image, (B) Normalized and resized image
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3 Experiments

In this experiments the influence of preprocessing and color encoding of the datasets on
image classification models in the context of a surgery shall be investigated. Therefore a
model shall classify the presence of a surgical tool in laprascopic frame. Regarding the color
encoding the two color spaces HSV and RGB have been chosen. Furthermore there will be
two versions of the HSV color space differing from each other in the way they get
normalized.

The training, validating and testing of those classifiers will be done on the Cholec80 dataset.
Cholec80 is a public dataset containing 80 videos of laparoscopic cholecystectomies and the
related labels for tool presence. Once the tools to be classified wether they are in the image
or not have been selected, one dataset for each tool gets created. To obtain best possible
learning results each dataset gets balanced on the belonging tool.
A simple model, normalization functions and dataset classes were written as part of the
experiment preparation.

3.1 Description
The 80 videos of the Cholec80 dataset are randomly divided into training, validation, test
set. To avoid data leakage, only whole videos are assigned to the respective sets.The
training set consists of 51, the validation set of 13 and the test set of 16 videos.

In total, models are to be trained for four different tools (figure 3.1):

• (A) Clipper: The clipper is an instrument that can apply polymer or metal clips,
depending on the model. In laparoscopic cholecystectomy, the clips it applies are used
to close the cystic artery and the cystic duct. The model used in the Cholec80 dataset
uses metal clips.

• (B) Scissors: Scissors are used in this operation for adhesiolysis, i.e. surgical
loosening of adhesions, and cutting of the artery and ductus cysticus. In contrast to
open surgery, scissors are rarely used for tissue dissection in this procedure.
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• (C) Grasper: The Grasper is an instrument that is similar in function to the forceps
used in open surgery. This means that it is used, for example, to grasp and hold
organs, tissue, sutures or the specimen bag.

• (D) Hook: The hook is a preparation instrument which, with the help of a pedal, can
apply monopolar current to separate tissue and coagulate it at the same time. In
laparoscopic cholecystectomy, the hook is used for adhesiolysis, preparation of calots
triangle, dislodging the gallbladder from the gallbladder bed, and subsequent
hemostasis. Hemostasis means the stopping of bleeding.

Since the individual tools are represented differently in the videos depending on what they are
used for, this can lead to a strong imbalance. The grasper and the hook are almost balanced
in terms of their percentage of presence and absence and have each over 100k of a total of
184498 frames labeled present. That means about 55% presence versus 45% absence.

The clipper on the other hand has a total of about 5.9k frames and the scissors only 3.2k
frames. This means, that a classifier, which classifies the clipper always as absent, would get
an accuracy of about 96.8% and with constant absence of the scissors even about 98.2%.
(c.f. table 3.1)

To counteract this, the dataframes are balanced by omitting frames. A separate dataset is
created for each of the instruments whose classification is to be trained, consisting of
training, validation and test set. The dimensions of these data frames for each instrument
can be seen in the table 3.2.

grasper hook clipper scissors
present absent present absent present absent present absent

total amount 102588 81910 103106 81392 5986 178512 3254 181244
share (rounded) 55.6% 44.4% 55.9% 44.1% 3.2% 96.8% 1.8% 98.2%

Table 3.1: Tool distribution over the entire Cholec80 dataset in absolute numbers and
percentages.

In addition, models are trained for each tool in different color spaces. For one trial the
frames are read in RGB and normalized. In the next experiment they are read in HSV color
space but normalized as if they were read in RGB color space. In the third, there are those
that are read in HSV color space and normalized accordingly. This means in this case that
the Hue channel is normalized according to its circular nature.

For each tool and color space, models are trained with three different learning rates on a
Nvidia GeForce RTX 2080 TI. In total, there are 36 training runs that take between eight
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Figure 3.1: Tools whose classification is to be trained by the models. Those four
images show the tools that where chosen for the classifiers to be trained on. A is a clipper,
B is a scissors, C are two graspers and D is a hook. All of those images are taken from the
videos of the Cholec80 dataset.

minutes for the small datasets (Clipper and Scissors) and up to seven hours for the larger
datasets (Grasper and Hook).

Grasper dataset Hook dataset Clipper dataset Scissors dataset
total amount
of frames

163820 162784 11972 6508

train set
(share in %)

63.63 65.10 56.23 62.41

validation set
(share in %)

16.90 15.74 20.13 14.00

test set
(share in %)

19.47 19.16 23.64 23.59

Table 3.2: Relative size of each dataset. Includes total number of frames and percentage
distribution.

3.2 Implementation

3.2.1 Model

The model used in this thesis was written using the PyTorch Lighning framework.
For this experiment, a CBR tiny was constructed as described by Raghu et al (9) and shown
in Figure 3.2. It contains 4 convolutional layers and one fully connected (fc) layer. The
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convolutional layers use a 5x5 kernel with a step size of 1 and 0 padding. This is followed by
a rectified linear unit (ReLU) as activation function. A ReLU replaces every negative number
with a zero. Afterwards a max pooling with a 3x3 spatial window and a step size of 2. Max
pooling reduces the size of the given image depending on its window and step size. Each
batch is normalized before passing to the next layer. Now it surpasses the fc layer which
returns logits that afterwards get converted into a probability using a softmax. Finally the
cross entropy loss gets calculated on those probabiities.

Figure 3.2: Architecture of the model. Simplified presentation showing the amount and
size of channels on each layer on top. The text on the bottom gives an explanation on the
operations being done in that particular layer.
(This figure was created using http://alexlenail.me/NN-SVG/index.html)

The number in front of the @ sign indicates the number of channels in this layer of the
network, while the two numbers behind it indicate the width and height. Under the
connectors of the different layers, the operations performed from one layer to the next are
indicated. On the far right is the last layer, fc, which shows the output of the network.

3.2.2 Normalization

Non circular channels

The normalization of the images was done on each color channel separately. For this
purpose a function was written which takes the dataset and the color space as parameters.
Within the function a DataLoader, taken from torch.utils.data, was used for the calculation
of the mean values and standard deviations for each channel. The DataLoader was assigned
the dataset, a batch size of 100 and 4 workers as parameters.

For the calculation of the mean value (µ) the values of all pixels need to be added and
divided by the total number of pixels (N) in this channel.

µ =
∑ px
N (1)

For the calculation of the standard deviation (σ) the mean value needs to be substracted
from each pixel. Afterwards these are squared and added together. When the number of

14



pixels in the channel are divided, the variance (σ2) is obtained. Subsequently taking the
square root gives the standard deviation.

σ =

√√√√ 1
N

N∑
i=1

(xi − µ)2 (2)

This is how the mean value and standard deviation is calculated for all channels of the color
spaces RGB and HSVrgb.

TO investigate the influence of the normalization itself another HSV dataset was created
and normalized as if it was not circular. This one was given the designation HSVrgb.

Circular channels

For the first channel of the color space HSV a different procedure had to be chosen because
of its circular structure. Instead of starting with the calculation of a mean value, a mean
angle (µangle) is calculated. For this purpose the pixel values were transformed into
complex numbers with the help of NumPy in order to calculate a mean vector.

µangle = angle(
∑N

k e2iπchannel

N ) (3)

This mean vector was then used to center the pixel values of the circular channel around
0.

centered circular channel = angle(e2iπchannel−iµangle) (4)

After centering this channel can be normalized as if it was a non circular channel.

Figure 3.3: Differences between normalization procedures on the H channel. All three
pictures are resized. (A) unnormalzed image, (B) image of hue channel normalized as if it
was not circular, (C) image of hue channel normalized circular. The Colorbar beneath image
(B) and (C) shows the the pixel values of the images.

The differences resulting out of the differing normalization procedures can be seen in Figure
3.3. The trained eye immediately recognizes grasper, hook, gallbladder and liver in image A.
This one contains the original Image which got just resized. Images B and C, on the other
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hand, make it much more difficult, if not impossible, to recognize something.
Image B shows the result of channel H that was normalized ignoring its circular nature. It
consists mostly of yellow and purple pixels.
The last one, image C is the result of a normalization of the H channel adapted to the
circular structure.

3.2.3 Training

For the training the Pytorch Lightning Framework was used. During the training, the
accuracy, the loss and the AUC ROC per batch were determined and stored for the
evaluation.
The average loss per validation epoch was used as termination criterion. For this, the early
stop callback from the Pytorch Lightning framework was used with a patience of 30. The
patience specifies how many epochs a loss value may increase before the training is
terminated. The value of 30 means that after the lowest measured loss value the training
will continue for another 30 epochs to see if the value can be undercut. Thus, no maximum
number of training epochs is set in advance.

3.3 results
In a direct comparison of the learning rates during training, the model trained on data sets
in the RGB color space shows better values in the area of validation accuracy, validation loss
and AUROC than the other two models. In the small data sets of scissors and clipper, this
advantage is more pronounced than in the larger data sets. The model trained in the HSV
color space is again more successful than the HSVrgb model in almost all learning rates.
The gap to the RGB models is smaller than that to the HSVrgb models.

3.3.1 results of best models

Table 3.3 shows the AUROC and accuracy values obtained when the best models were
applied to the test sets. Considering the the cells with the bold values one sees the the
highest scores achieved for each tool. The RGB classifier has got the best scores for three
out of the four tools. Those three are scissors, clipper and grasper. On the hook dataset the
HSV classifier achieved the highest score.

Unsurprisingly, classification models trained on much smaller datasets achieve lower AUROC
and accuracy values. Especially when considering the two small datasets, the RGB classifier
stands out against the HSV and the HSVrgb classifier. (cf. 3.3) For example, the RGB
AUROC value for the scissors datasets with its 6508 images, is 0.7771. This value is
significantly better than those achieved by the other two models. HSVrgb came to 0.7054
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and HSV even only to 0.6565. It was the same for the accuracy. The HSV model achieved
an accuracy of 0.6987 on the smallest dataset and thus a higher value than HSVrgb with an
accuracy value of 0.6396. The HSV classifier performed significantly worse on this dataset.
This reached a value of 0.5880.

Looking at the larger dataset hook with its 162784 images, the achieved values of the
classifiers are much closer together. All three classifiers achieve an AUROC score of more
than 0.98 on this dataset. Also in terms of accuracy the best values of the experiment are
achieved with 0.9398 (HSVrgb), 0.9468 (RGB) and 0.9505 (HSV). The HSV classifier is the
one with the highest values in this case.

The grasper, which with 163820 images is a dataset of comparable size to the hook dataset,
nevertheless achieves significantly worse values. The best performing classifier is again the
RGB classifier with an AUROC of 0.8384 and an accuracy of 0.7579. Just below is HSV
with an AUROC of 0.8275 and an accuracy of 0.7483. The HSVrgb classifier with 0.7688
AUROC and 0.6963 accuracy is much worse. (cf. table 3.3)

AUROC Accuracy
amount
of frames

HSV RGB HSVrgb HSV RGB HSVrgb

scissors 6508 0.6565 0.7771 0.7054 0.5880 0.6987 0.6396
clipper 11972 0.7584 0.8212 0.8050 0.6641 0.7460 0.6469
hook 162784 0.9855 0.9835 0.9827 0.9505 0.9468 0.9398

grasper 163820 0.8275 0.8384 0.7688 0.7483 0.7579 0.6963

Table 3.3: Results of the tested models on each of the four tools. Sorted first by
AUROCand Accuracy. Afterwards by the color spaces. Total amount of frames gives the
number of frames each dataset contains in total. The bold written scores show the best
results for a AUROC and accuracy for each tool.

The confusion matrices shown in figure 3.5, figure 3.7, figure 3.6 and figure 3.4 and evaluate
the performance of the different classifiers. Each confusion matrix displays the result related
to one color space and one tool. The color spaces are ordered from left to right. Beginning
with HSV, followed by RGB and HSVrgb. The datasets are ordered top down. In the first
row are the scissors datasets followed by the clipper, the grasper and the hook
datasets.

The y score threshold those matrices got calculated on is 0.5.
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Figure 3.4: Confusion matrices: scissors. Comparing the ground truth with the predicted
labels of the three scissors dataset classifiers. From left to right are the color spaces HSV,
RGB and HSVrgb. The threshold for these matrices is 0.5.

Figure 3.5: Confusion matrices: clipper. Comparing the ground truth with the predicted
labels of the three clipper dataset classifiers. From left to right are the color spaces HSV,
RGB and HSVrgb. The threshold for these matrices is 0.5.

Figure 3.6: Confusion matrices: hook. Comparing the ground truth with the predicted
labels of the three hook datasets classifiers. From left to right are the color spaces HSV, RGB
and HSVrgb. The threshold for these matrices is 0.5.

Figure 3.7: Confusion matrices: grasper. Comparing the ground truth with the predicted
labels of the three grasper dataset classifiers. From left to right are the color spaces HSV,
RGB and HSVrgb. The threshold for these matrices is 0.5.
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3.3.2 Example frames of false classified frames

Besides the actual performance of a classification model, the evaluation of other factors is
also of great importance. Checking upon images with wrong predictions resulting in false
positives or negatives can be a first step. By doing this one can see possible reasons for the
false classification. There might be, for instance, something on the image that distracts the
classifier. Another possible reason would be wrong labels at some of the images resulting in
false positives or negatives. Therefore it is quite useful to have at least a look at those false
positives and negatives with high confidence scores on the side of the classifier as those are
the ones with the highest loss.

Examples of most confident False Positives

Following are some examples of the false positive classified frames with the highest
confidence per tool and color space. Each of the figures shows three results of each color
space for one tool. From left to right are shown RGB, HSV and HSVrgb. One can find the
ground truth label followed by the predicted y score of the classifier on top of each image
shown in the figures.

When looking at the figures, it is important to remember that they make up only a tiny
amount of the datasets. Also, if in a figure all images have wrong labels or in a figure none
of the models has made a correct prediction, this does not mean that the whole dataset is
correct.

Figure 3.8 shows some of the FP predictions achieved by each classifier on the scissors
dataset. Different tools can be seen on the images. The ground truth labels appear to be
correct on all images occurring in this figure.

The FP predicted clippers in figure 3.9 again show different tools. None of them is the
clipper. Also in this figure all ground truth labels are assigned correctly. It is noticeable that
often the shafts of the tools are in the picture.

The predictions made for the hook and shown in figure 3.10 seem to be correct contrary to
the ground truth labels. There is a hook on each of the images.However, often only the end
of the tool can be seen.
Similar to figure 3.10, labels in figure 3.11 seem to be set incorrectly. The tip of the grasper
cannot be seen in its entirety in any of the images.
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Figure 3.8: Scissors: FP examples for each color space.
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Figure 3.9: Clipper: FP examples for each color space.
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Figure 3.10: Hook: FP examples for each color space.
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Figure 3.11: Grasper: FP examples for each color space.

Examples of most confident False Negatives

The following figures show examples of false negative predicted images. Those are again the
ones with the highest confidence. The images inside these figures are arranged the same way
the false positives are.
The examples shown in Figure 3.12 reveal scissors to a greater or lesser degree in each of
the images. The labels seem to be correct contrary to the predictions. In some cases, much
of the shaft of the scissors is visible (row 1 of HSV and RGB column) and in others the tip
(row 2 RGB column) or all but the tip is obscured by tissue.

The FN examples shown in Figure 3.13 all appear to contain at least part of the clipper. In
many of the images, either the tip or all but the tip is obscured or out of frame.

The hook in figure 3.14 is present in all of the images. In some cases it is covered by tissue.
In others, only the front part of the tip is visible.
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In some of the FN examples of the grasper in Figure 3.15 a grasper is visible. In other cases
images only contain a fraction of the tool.

Figure 3.12: Scissors: FN examples for each color space.
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Figure 3.13: Clipper: FN examples for each color space.
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Figure 3.14: Hook: FN examples for each color space.
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Figure 3.15: Grasper: FN examples for each color space.

3.4 Interpretation
Comparing the results of the model testings one notices that the current standard color
space for deep learning, RGB, does in deed perform better than its two challengers.
Achieving higher scores regarding accuracy and AUROC on three of four tools it clearly
stands out. It seems that the RGB model does work more robust even on smaller datasets as
its lead is the biggest for those. Comparing RGB and HSV regarding the two bigger datasets
they achieve almost similar results. The HSVrgb which the hue channel being normalized
like it was not circular does perform better than HSV regarding the small datasets. Though
it is not as good as RGB. When it comes to the hook dataset it has similar AUROC scores
as the other two classifiers but stands a bit back regarding the accuracy. Interestingly it
performs much worse than HSV and RGB on the grasper dataset.

When it comes to the two larger datasets the HSV model can definitely catch up with the
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RGB model. Regarding the second largest dataset, the hook, all three classifiers achieve
similar high scores.
One possible reason for the much better performance of all models on the hook dataset
could be that the hook as such is easier to classify than the other tools. Unlike the other
three tools, this one has white rather than silver at the tip. Furthermore, unlike the hook,
the other three tools have two tips when open which can be seen in figure 3.1

Regarding the differing performance of the three classifiers on the two small datasets an
option could be that possible false set labels as shown in 3.10 do have a much stronger
impact on datasets with a much smaller pool of images. Even a few predictions classified as
false positive or false negative increase the loss of the model clearly and thereby decrease the
accuracy. One solution approach would be to iterate trough the false positive and false
negative classified images with high prediction values. While having a look at those images
one can check for possible reason of the false classification. If the ground truth has some
false set labels those might be corrected. Also other possible reasons for errors can be
investigated that way.

The figures showing FPs and FNs in some cases have the exactly same images for the
different color spaces. Examples of those can for instance be found in figure 3.8 row 1 and 2
of the RGB and HSVrgb columns or row 1 of the HSV and RGB column and row 3 of the
HSV and HSVrgb column of figure 3.12. This fact is quite interesting as it shows that the
three classifiers seem to stumble, at least partly, over the same images.

Some of the FP and FN classified predictions raise questions about the definition of the
labels. A tool is labeled as present when at least half of its tip is visible. (7) Where the tip
starts or ends is not mentioned. For example, figure 3.10 shows the hook in different
orientations with different amounts of the tip visible. At least some of these are wrong
according to my understanding.

In the image in the 2nd row of the HSVrgb classifier in in figure 3.15, only a silver reflection
around the upper edge of the trocar is visible from the grasper. The tip of the clipper in the
3rd row of the HSV classifier in figure 3.13 is completely covered by tissue. Both tools are
still visible according to ground truth.

The smaller the dataset on which the models are to be trained, the more important it is
thatthe data of the dataset is well cleaned.
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4 Discussion

Exploring the possibilities of increasing the prediction accuracy of classifying models used in
the operating theatre and thereby increase the safety of patients is an extremely important
and necessary. Therefore within this thesis the influence of color spaces on deep learning
models for image classification was investigated. Several models have been trained on
different tools and using different color encoding and normalizations.

The normalization of the HSV coded images proved to be difficult. Since the Hue channel is
circular, normalization as one would do for each channel of the RGB images does not
produce the same satisfactory results. One of the reasons for this is the combination of the
color distribution of the surgical images and the Hue channel. The images are all very
red-heavy. Red is again exactly the color where the circle of the Hue channel is split. Thus,
both at 0 and 360 degrees is red.

To investigate the influence of this factor, two datasets were created for the HSV color
space. One of them was normalized as if it were three linear channels. This was given the
designation HSVrgb. The other dataset was normalized considering the circular structure of
the Hue channel. It was this normalization that was to prove challenging. Unlike for RGB,
there are no standard libraries for image normalization in this color space. For the
normalization of this channel complex numbers were used. The implementation of this
normalization function took a relatively long time.

During the training it became apparent how important balanced datasets are for the actual
learning success of a classifier. When training the tools scissors or clippers on an unbalanced
dataset, accuracy values of well over 90% were achieved (cf. table 3.1). However, because
of the small number of these two tools in relation to the total number of images in the
datasets, it was found that stubbornly predicting them as absent was sufficient to produce
such high values. Thus, the model did not necessarily learn the classification of the images.
Therefore, for each of the four selected tools, a separate dataset was created, balanced with
respect to the tool.
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By balancing the datasets the achieved results are not representative for normal surgical
image classification. Though this was needed to compare the results and performance of the
different color spaces. That was also the reason to choose different tools. Nevertheless the
whole setup is extremely specific. Therefore changing the surgical department or even the
procedure might light to completely different results.

4.1 Conclusion
In this work, the influence of color spaces on image classifiers was investigated for a very
specific use case. It was found that color spaces do have an impact and performance can be
influenced by the choice of color space and its normalization. Furthermore, it was found that
the RGB color space performs better than the HSV color space, which is fair since it is the
most commonly used. Especially for small datasets, this color space seems to be more
robust.

The fact that despite the special use case the best results were achieved by the RGB model
shows that RGB is efficient as a standard color space for Deep Learning models.

However, the results of this experiment have no general validity due to their specific
orientation. It may be that changing the surgical procedure will produce different results.
Also the use of other color spaces could bring further interesting results.

4.2 Outlook
Overall, the investigation of the effect of a color space on a deep learning algorithm for
classifying surgical images worked as intended. Even if the results are not what was hoped
for. When switching the color space in preprocessing it is of importance to normalize
accordingly. The classification model using HSVrgb can neither keep up with RGB on the
smaller datasets nor with RGB and HSV on the larger ones.

The classifier using HSV could not stand its ground against the one using RGB regarding
small datasets with a few thousand images. When it comes to the larger datasets with more
than 150k images the HSV classifier is able to keep up with the RGB classifier. It can even
achieve better results for one the two large datasets. Though its lead is not of any
significance regarding accuracy and AUROC score. One can not tell if a bigger classification
model bigger datasets or an adapted normalization function would increase the gap.
Whether or HSV or RGB.

The tight time frame made it impossible for me to investigate different model architectures
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including a lot more complex ones. Considering the influence the dataset size has on the
HSV model regarding its performance it would be quite interesting to investigate this
behavior on much larger sets with a variation of different models being trained on various
different color spaces. The RGB color space seems to be more robust against small datasets.
Also the normalization process, especially of the hue channel and its correlation to the
saturation channel deserve a further investigation.
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A1 Video distribution

A1.1 Train set

video01 video22 video40 video56 video70
video02 video24 video41 video57 video72
video04 video25 video42 video58 video73
video08 video27 video44 video59 video74
video10 video28 video45 video60 video75
video13 video31 video46 video63 video76
video14 video33 video47 video66 video77
video16 video35 video48 video67 video78
video17 video36 video51 video68 video79
video18 video38 video54 video69 video80
video21

Table A1.1: Videos that are part of the test set.

A1.2 Validation set

video05 video11 video26 video53 video61
video07 video12 video49 video55 video65
video09 video15 video50

Table A1.2: Videos that are part of the validation set.
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A1.3 Test set

video03 video23 video32 video39 video62
video06 video29 video34 video43 video64
video19 video30 video37 video52 video71
video20

Table A1.3: Videos that are part of the test set.
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A2 Source code

A2.1 Modules

Listing A2.1: Imports
1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4 import torch.optim as optim
5 import torchvision
6 import matplotlib.pyplot as plt
7 import pandas as pd
8 import re
9 import cv2
10 import albumentations
11 import albumentations.pytorch
12 import time
13 import numpy as np
14 import pytorch_lightning as pl
15 import neptune
16 import time
17 from tqdm import tqdm
18 from pytorch_lightning.callbacks import ModelCheckpoint
19 from pytorch_lightning.metrics.functional import auroc
20 from pytorch_lightning.metrics.functional import accuracy
21 from pathlib import Path
22 from torch.utils.data import Dataset
23 from torch.utils.data import DataLoader
24 from torch.utils.data import random_split
25 from pytorch_lightning.callbacks.early_stopping import EarlyStopping

Listing A2.2: Simple Dataset
1 class SimpleDataset(Dataset):
2 ’’’
3 Creates Dataset without any normalisation procedure beeing done.
4 This one is needed to calculate normalization values.
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5 ’’’
6 def __init__(self, df, cs=’RGB’):
7 ’’’
8 :param cs: Colorspace in which the images shall be loaded. Default value is ’RGB’.
9
10 :return: Dataset of wanted color space, unnormalized.
11 ’’’
12 self.img_path = (’/workspace/shared_data/cholec80/frames/’+df.video.astype(str)+’/’
13 +df.video.astype(str)+df.frame.apply(lambda f: f’_{f:06d}.jpg’)).to_numpy()
14 self.label = df.label.to_numpy().astype(int)
15 self.resize_fn = albumentations.Resize(244,244)
16 self.colorspace = cs
17
18 def _resize_img(self, X):
19 X = self.resize_fn(image = X)[’image’]
20 return X
21
22 def __getitem__(self, index):
23 X = cv2.imread(self.img_path[index])
24 if self.colorspace == ’RGB’:
25 X = cv2.cvtColor(X, cv2.COLOR_BGR2RGB)
26 else:
27 X = cv2.cvtColor(X, cv2.COLOR_BGR2HSV)
28 X = self._resize_img(X)
29 X = albumentations.pytorch.ToTensorV2()(image = X)[’image’]
30 X = X.float()
31 if self.colorspace == ’RGB’:
32 X = torch.div(X, 255)
33 else:
34 X[0] /= 179
35 X[1:] /= 255
36 y = self.label[index]
37 return X, y
38
39 def __len__(self):
40 return len(self.label)

Listing A2.3: Image dataset
1 class ImgDataset(Dataset):
2 ’’’
3 Creates image dataset out of given csv.
4 ’’’
5 def __init__(self, df, norm_vals, cs=’RGB’, normalize=True, rgb_like = False):
6 ’’’
7 :param df: csv that shall be converted to image dataset
8 :param cs: Colorspace in which the images shall be loaded. Default value is ’RGB’.
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9 :param normalize: True if dataset shall be normalized. Default value is True.
10
11 :return: Dataset, normalized on given colorspace if wanted.
12 ’’’
13 self.img_path = (’/workspace/shared_data/cholec80/frames/’+df.video.astype(str)+’/’
14 +df.video.astype(str)+df.frame.apply(lambda f: f’_{f:06d}.jpg’)).to_numpy()
15 self.label = df.label.to_numpy().astype(int)
16 self.resize_fn = albumentations.Resize(244,244)
17 self.colorspace = cs
18 self.normalize = normalize
19 self.means, self.stds = norm_vals
20 self.rgb_like = rgb_like
21
22 # normalize on given colorspace if normalize parameter is set to True.
23 if normalize:
24 if self.colorspace == ’RGB’:
25 self.normalize_fn = self.normalization_RGB_like_fn(self.means, self.stds)
26 elif self.colorspace == ’HSV’:
27 if rgb_like:
28 self.normalize_fn = self.normalization_RGB_like_fn(self.means, self.stds)
29 else:
30 self.normalize_fn = self.normalization_H_circular_fn(self.means, self.stds)
31 else:
32 print(’Wrong␣input.␣Default␣colorspace␣used.’)
33 else:
34 self.normalize_fn = albumentations.Normalize([0, 0, 0], [1, 1, 1])
35 print(f’__init__␣\n␣−normalized␣:␣{self.normalize}\n␣−colorspace␣:␣{self.colorspace}\n␣−

rgb_like␣:␣{rgb_like}’)
36
37 def normalization_RGB_like_fn(self, means, stds):
38 def fn(image):
39 image = torch.div(image, 255.)
40 image[0,:,:] = (image[0,:,:] − means[0])/stds[0]
41 image[1,:,:] = (image[1,:,:] − means[1])/stds[1]
42 image[2,:,:] = (image[2,:,:] − means[2])/stds[2]
43 return {’image’:image}
44 return fn
45
46 def normalization_H_circular_fn(self, means, stds):
47 def fn(image):
48 image[0,:,:] = torch.div(image[0],179.)
49 image[1:,:,:] =torch.div(image[1:],255.)
50 H_centered = np.exp((2 ∗ 1.j ∗ np.pi ∗ image[0,:,:].numpy() − 1j ∗ means[0].numpy()))
51 H_centered = np.angle(H_centered)
52 image[0,:,:] = H_centered/stds[0]
53 image[1,:,:] = (image[1,:,:] − means[1])/stds[1]
54 image[2,:,:] = (image[2,:,:] − means[2])/stds[2]
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55 return {’image’:image}
56 return fn
57
58 def __call__(self, cs):
59 self.colorspace = cs
60 print(f’__call__␣with␣{self.colorspace}’)
61
62 def _normalize_img(self, X):
63 X = self.normalize_fn(image = X)[’image’]
64 return X
65
66 def _resize_img(self, X):
67 X = self.resize_fn(image = X)[’image’]
68 return X
69
70 def __getitem__(self, index):
71 X = cv2.imread(self.img_path[index])
72 X = self._resize_img(X)
73 if self.colorspace == ’RGB’:
74 X = cv2.cvtColor(X, cv2.COLOR_BGR2RGB)
75 else:
76 X = cv2.cvtColor(X, cv2.COLOR_BGR2HSV)
77 X = albumentations.pytorch.ToTensorV2()(image = X)[’image’].type(torch.float)
78 X = self._normalize_img(X)
79 y = self.label[index]
80 return X, y
81
82 def __len__(self):
83 return len(self.label)

Listing A2.4: Balanced dataset creation
1 def create_balanced_dataframes(unbalanced_df, id_list=[], tool=’clipper’, span=[0,0],

small_df_sample_size=0):
2 ’’’
3 Returns a version of given dataframe which is balanced regarding the given tool (which should be one

of the columns).
4 It might be chosen to create a smaller dataset out of the balanced. If no argument regarding that is

given the
5 mentioned dataframe gets returned.
6
7 :param unbalanced_df: Dataframe that shall be taken a balanced sample from
8 :param id_list: List of video ids from that the dataframes shall be created.
9 :param tool: Tool on which the dataframe shall be balanced on. The tool has to be one of the columns

of the dataframe.
10 :param span: Range of dataframe that shall be created
11 :param small_df_sample_size: Desired size of smaller dataframe. No smaller Dataframe gets created if
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0. Default is 0.
12
13 :return: either one or two dataframes depending on given parameters
14 ’’’
15 df = pd.DataFrame()
16 start, end = span
17
18 # filter unique video names to work with whole videos while balancing dataset.
19 video_ids = id_list if id_list != [] else unbalanced_df.video.unique()
20
21
22 if start < end:
23 for i in range(start, end):
24 df = df.append(unbalanced_df[unbalanced_df[’video’] == video_ids[i]])
25 #checks if there is more ones or zeros in column with tools name
26 more_less=(1,0) if (df[tool].values == 1).sum() > (df[tool].values == 0).sum() else (0,1)
27 bal_df = df[df[tool] == more_less[1]]
28 bal_df = bal_df.append(df[df[tool] == more_less[0]].sample(n=len(bal_df)))
29 # dataset gets shuffeld via .sample(frac=1) to avoid batches including ones XOR zeros
30 bal_df = bal_df.sample(frac=1)
31 else:
32 for i in range(len(df)):
33 df = df.append(unbalanced_df[unbalanced_df[’video’] == video_ids[i]])
34 #checks if there is more ones or zeros in column with tools name
35 more_less=(1,0) if (df[tool].values == 1).sum() > (df[tool].values == 0).sum() else (0,1)
36 bal_df = df[df[tool] == more_less[1]]
37 bal_df = bal_df.append(df[df[tool] == more_less[0]].sample(n=len(bal_df)))
38 # dataset gets shuffeld via .sample(frac=1) to avoid batches including ones XOR zeros
39 bal_df = bal_df.sample(frac=1)
40
41 bal_df[’label’] = bal_df[tool]
42
43 if small_df_sample_size != 0:
44 bal_small_df = pd.DataFrame()
45 bal_small_df = df[df[tool] == 1].sample(n = small_df_sample_size)
46 bal_small_df = bal_small_df.append(df[df[tool] == 0].sample(n = small_df_sample_size))
47 # dataset gets shuffeld via .sample(frac=1) to avoid batches including ones XOR zeros
48 bal_small_df = bal_small_df.sample(frac=1)
49 return bal_df, bal_small_df
50 else:
51 return bal_df

Listing A2.5: Normalization value calculation
1 def calc_normalisation_values(dataset, rgb_like=True, batch_size=100, num_workers=4):
2 ’’’
3 calculates mean and standard difference for each picture channel of given dataset.
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4
5 :param dataset: Dataset on which normalisation values shall be calculated.
6 :param rgb_like: False if first channel shall be normalized circular. Default is True.
7 :param batch_size: Batch size for DataLoader. Default is 100.
8 :param num_workers: Num of workers for DataLoader. Default is 4.
9
10 :return: Dictionary containing mean and std for each channel.
11 ’’’
12
13 loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers)
14
15 if rgb_like:
16 num_of_px = len(dataset) ∗ 244 ∗ 244
17 sum_chan0 = sum_chan1 = sum_chan2 = 0.
18 for imgs, labels in loader:
19 sum_chan0 += imgs[:,0,:,:].sum()
20 sum_chan1 += imgs[:,1,:,:].sum()
21 sum_chan2 += imgs[:,2,:,:].sum()
22 mean_r = sum_chan0 / num_of_px
23 mean_g = sum_chan1 / num_of_px
24 mean_b = sum_chan2 / num_of_px
25
26 sum_squared_err0 = sum_squared_err1 = sum_squared_err2 = 0.
27 for imgs, labels in loader:
28 sum_squared_err0 += (imgs[:,0,:,:]−mean_r).pow(2).sum()
29 sum_squared_err1 += (imgs[:,1,:,:]−mean_g).pow(2).sum()
30 sum_squared_err2 += (imgs[:,2,:,:]−mean_b).pow(2).sum()
31 std_r = torch.sqrt(sum_squared_err0 / num_of_px)
32 std_g = torch.sqrt(sum_squared_err1 / num_of_px)
33 std_b = torch.sqrt(sum_squared_err2 / num_of_px)
34
35 return [mean_r, mean_g, mean_b],[std_r, std_g, std_b]
36
37 #calculating values for the first channel ’H’ looks different due to ’H’ beeing circular.
38 else:
39 num_of_px = len(dataset) ∗ 244 ∗ 244
40 sum_h = 0.j
41 sum_s = sum_v = 0.
42
43 for imgs, labels in loader:
44 sum_h += (np.exp(2 ∗ 1j ∗ np.pi ∗ imgs[:,0,:,:].numpy())/num_of_px).sum()
45 sum_s += imgs[:,1,:,:].sum()
46 sum_v += imgs[:,2,:,:].sum()
47 H_mean_angle = np.angle(sum_h)
48 mean_s = (sum_s / num_of_px)
49 mean_v = (sum_v / num_of_px)
50

40



51 sum_squared_h = sum_squared_s = sum_squared_v = 0.
52 for imgs, labels in loader:
53 H_centered = np.exp((2 ∗ 1.j ∗ np.pi ∗ imgs[:,0,:,:].numpy() − 1.j ∗ H_mean_angle))
54 H_centered = np.angle(H_centered)
55 sum_squared_h += np.power(H_centered,2).sum()
56 sum_squared_s += (imgs[:,1,:,:]−mean_s).pow(2).sum()
57 sum_squared_v += (imgs[:,2,:,:]−mean_v).pow(2).sum()
58 std_h = torch.tensor(np.sqrt(sum_squared_h / num_of_px))
59 std_s = np.sqrt(sum_squared_s / num_of_px)
60 std_v = np.sqrt(sum_squared_v / num_of_px)
61
62 return [[torch.tensor(H_mean_angle), mean_s, mean_v], [std_h, std_s, std_v]]

Listing A2.6: Normalized dataset creation
1 def norm_dataset_creation(tool, cs, rgb_like, batch_size=300, num_workers=4):
2 ’’’
3 This function creates three image datasets according to the given tool. All three get normalized on
4 the normalization values calculated on the train dataframe. Plots Histogram of flattend first channel
5 and mean of rows and columns of first channel (of one batch).
6
7 :param tool: Tool the datasets shall be balanced on.
8 :param cs: Wanted color space.
9 :param rgb_like: False if normalization on first channel shall be circular which is needed for HSV
10 normalization.
11
12 :return: Dataset class for each of three given dataframes.
13 ’’’
14 train_path = f’/workspace/app/resources/{tool}/train_df.csv’
15 val_path = f’/workspace/app/resources/{tool}/val_df.csv’
16 test_path = f’/workspace/app/resources/{tool}/test_df.csv’
17
18 unnorm_ds = SimpleDataset(df=pd.read_csv(train_path), cs=cs)
19 norm_vals = calc_normalisation_values(dataset=unnorm_ds, rgb_like=rgb_like)
20
21 print(’train’)
22 train_ds = ImgDataset(df=pd.read_csv(train_path), cs=cs, norm_vals=norm_vals, normalize=True,

rgb_like=rgb_like)
23 print(’val’)
24 val_ds = ImgDataset(df=pd.read_csv(val_path), cs=cs, norm_vals=norm_vals, normalize=True,

rgb_like=rgb_like)
25 print(’test’)
26 test_ds = ImgDataset(df=pd.read_csv(test_path), cs=cs, norm_vals=norm_vals, normalize=True,

rgb_like=rgb_like)
27
28 trainloader=DataLoader(train_ds, batch_size=300, num_workers=4, shuffle=True)
29 for imgs, labels in trainloader:
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30 break
31 plt.figure(figsize=[12,6])
32 plt.subplot(1,2,1)
33 plt.hist(imgs[:,0,:,:].flatten(), bins=20)
34 plt.title(f’train␣|␣cs:{cs}␣|␣rgb_like:{rgb_like}’)
35 plt.subplot(1,2,2)
36 plt.hist(imgs[:,0,:,:].mean(axis=−1).mean(axis=−1), bins=20)
37 plt.title(f’train␣|␣mean␣row␣&␣col␣|␣cs:{cs}␣|␣rgb_like:{rgb_like}’)
38
39 return train_ds, val_ds, test_ds

Listing A2.7: The model
1 class lightningTinyCBR(pl.LightningModule):
2
3 def __init__(self, train_set, val_set, test_set, learning_rate, batch_size=64, num_workers=4):
4 super().__init__()
5 self.conv1 = nn.Conv2d(3, 64, 5)
6 self.conv1_bn = nn.BatchNorm2d(64)
7 self.conv2 = nn.Conv2d(64, 128, 5)
8 self.conv2_bn = nn.BatchNorm2d(128)
9 self.conv3 = nn.Conv2d(128, 256, 5)
10 self.conv3_bn = nn.BatchNorm2d(256)
11 self.conv4 = nn.Conv2d(256, 512, 5)
12 self.conv4_bn = nn.BatchNorm2d(512)
13
14 self.pool = nn.MaxPool2d(3, stride=2)
15 self.fc1 = nn.Linear(51200, 2)
16 self.sm = nn.Softmax(dim = 1)
17
18 self.loss = nn.CrossEntropyLoss()
19
20 self.accuracy = pl.metrics.Accuracy()
21
22 self.batch_size = batch_size
23 self.num_workers = num_workers
24 self.lr = learning_rate
25 self.train_set = train_set
26 self.val_set = val_set
27 self.test_set = test_set
28
29 def forward(self, X):
30 X = self.conv1_bn(self.pool(F.relu(self.conv1(X))))
31 X = self.conv2_bn(self.pool(F.relu(self.conv2(X))))
32 X = self.conv3_bn(self.pool(F.relu(self.conv3(X))))
33 X = self.conv4_bn(self.pool(F.relu(self.conv4(X))))
34 X = torch.flatten(X, start_dim = 1)
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35 X = self.fc1(X)
36 return X
37
38 def configure_optimizers(self):
39 return optim.Adam(self.parameters(), lr=(self.lr))
40
41 def training_step(self, batch, batch_idx):
42 inputs, labels = batch
43 outputs = self(inputs)
44 y_score = self.sm(outputs)[:,1]
45 _, preds = torch.max(outputs, dim=1)
46 train_loss = self.loss(outputs, labels)
47 train_step_log = {’train_step_acc’: self.accuracy(preds, labels), ’train_step_loss’: train_loss}
48 return {’log’: train_step_log,
49 ’loss’: train_loss,
50 ’preds’: preds,
51 ’labels’: labels,
52 ’y_score’: y_score}
53
54 def training_epoch_end(self, training_step_outputs):
55 train_epoch_log = {’avg_train_loss’: torch.stack([out[’loss’] for out in training_step_outputs]).

mean()}
56 return {’log’: train_epoch_log}
57
58 def validation_step(self, batch, batch_idx):
59 val_step_dict = self.training_step(batch, batch_idx)
60 return {’val_loss’: val_step_dict[’loss’],
61 ’val_preds’: val_step_dict[’preds’],
62 ’val_labels’: val_step_dict[’labels’],
63 ’y_score’: val_step_dict[’y_score’]}
64
65 def validation_epoch_end(self, val_step_outputs):
66 preds = torch.stack([x[’val_preds’] for x in val_step_outputs if x[’val_preds’].shape[0] == self.

batch_size]).flatten()
67 labels = torch.stack([x[’val_labels’] for x in val_step_outputs if x[’val_preds’].shape[0] == self.

batch_size]).flatten()
68 y_score = torch.stack([x[’y_score’] for x in val_step_outputs if x[’y_score’].shape[0] == self.

batch_size]).flatten()
69 avg_val_loss = torch.stack([x[’val_loss’] for x in val_step_outputs]).mean()
70 roc_auc = pl.metrics.functional.auroc(pred=y_score, target=labels)
71 avg_val_acc = self.accuracy(preds, labels)
72 val_epoch_log = {’avg_val_loss’: avg_val_loss, ’avg_val_acc’: avg_val_acc, ’val_roc_auc’ :

roc_auc}
73
74 return {’log’: val_epoch_log}
75
76 def test_step(self, batch, batch_idx):
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77 test_step_dict = self.training_step(batch, batch_idx)
78 return {’test_loss’: test_step_dict[’loss’],
79 ’test_preds’: test_step_dict[’preds’],
80 ’test_labels’: test_step_dict[’labels’],
81 ’y_score’: test_step_dict[’y_score’]}
82
83 def test_epoch_end(self, test_step_outputs):
84 preds = torch.cat([x[’test_preds’] for x in test_step_outputs]).flatten()
85 labels = torch.cat([x[’test_labels’] for x in test_step_outputs]).flatten()
86 y_score = torch.cat([x[’y_score’] for x in test_step_outputs]).flatten()
87 avg_test_loss = torch.stack([x[’test_loss’] for x in test_step_outputs]).mean()
88 roc_auc = pl.metrics.functional.auroc(pred=y_score, target=labels)
89 avg_test_acc = self.accuracy(preds, labels)
90 test_epoch_log = {’avg_test_loss’: avg_test_loss, ’avg_test_acc’: avg_test_acc, ’test_roc_auc’

: roc_auc}
91 self.y_score_test = y_score.tolist()
92 self.ground_truth = labels.tolist()
93 return {’log’ : test_epoch_log}
94
95
96 def train_dataloader(self):
97 return DataLoader(self.train_set, batch_size=self.batch_size, num_workers=self.num_workers,

shuffle=True)
98
99 def val_dataloader(self):

100 return DataLoader(self.val_set, batch_size=self.batch_size, num_workers=self.num_workers)
101
102 def test_dataloader(self):
103 return DataLoader(self.test_set, batch_size=self.batch_size, num_workers=self.num_workers)

A2.2 Training

Listing A2.8: Imports
1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4 import torch.optim as optim
5 import torchvision
6 import matplotlib.pyplot as plt
7 import pandas as pd
8 import re
9 import cv2
10 import albumentations
11 import albumentations.pytorch
12 import time
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13 import numpy as np
14 import pytorch_lightning as pl
15 import neptune
16 import time
17 from tqdm import tqdm
18 from pytorch_lightning.callbacks import ModelCheckpoint
19 from pytorch_lightning.metrics.functional import auroc
20 from pytorch_lightning.metrics.functional import accuracy
21 from pathlib import Path
22 from torch.utils.data import Dataset
23 from torch.utils.data import DataLoader
24 from torch.utils.data import random_split
25 from pytorch_lightning.callbacks.early_stopping import EarlyStopping
26 from pytorch_lightning import Trainer
27 from pytorch_lightning.loggers import NeptuneLogger
28 from pytorch_lightning.callbacks import LearningRateMonitor
29
30 import ba_modules as bam
31 from cxdata.cholec80.utils import load_cholec80_as_dataframe
32
33 %config Completer.use_jedi = False

Listing A2.9: Imports
1 tools = [’grasper’, ’scissors’, ’hook’, ’clipper’]
2 for tool in tools:
3 # load Dataset (25fps)
4 data = load_cholec80_as_dataframe(path)
5
6 # reduce to 1 fps, drop nan
7 data1fps = data[data[’frame’] % 25 == 0]
8 data1fps = data1fps.dropna(subset=[’grasper’])
9 data1fps.reset_index(drop = True, inplace = True)
10
11 # shuffled list of all videos
12 all_videos = data1fps.video.unique()
13 np.random.shuffle(all_videos)
14
15 train_df = bam.create_balanced_dataframes(data1fps,
16 id_list=all_videos,
17 tool=tool,
18 span=[0, 51])
19 val_df = bam.create_balanced_dataframes(data1fps,
20 id_list=all_videos,
21 tool=tool,
22 span=[51, 64])
23 test_df = bam.create_balanced_dataframes(data1fps,
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24 id_list=all_videos,
25 tool=tool,
26 span=[64, 80])
27
28 train_df.to_csv(f’/workspace/app/resources/{tool}/train_df.csv’, index=False)
29 val_df.to_csv(f’/workspace/app/resources/{tool}/val_df.csv’, index=False)
30 test_df.to_csv(f’/workspace/app/resources/{tool}/test_df.csv’, index=False)

Listing A2.10: Dataset creation
1 #scissors
2 sciss_train_HSV, sciss_val_HSV, sciss_test_HSV = bam.norm_dataset_creation(’scissors’, cs=’HSV’,

rgb_like=False)
3 sciss_train_HSVrgb, sciss_val_HSVrgb, sciss_test_HSVrgb = bam.norm_dataset_creation(’scissors’, cs=’

HSV’, rgb_like=True)
4 sciss_train_RGB, sciss_val_RGB, sciss_test_RGB = bam.norm_dataset_creation(’scissors’, cs=’RGB’,

rgb_like=True)
5
6 #clipper
7 clip_train_HSV, clip_val_HSV, clip_test_HSV = bam.norm_dataset_creation(’clipper’, cs=’HSV’,

rgb_like=False)
8 clip_train_HSVrgb, clip_val_HSVrgb, clip_test_HSVrgb = bam.norm_dataset_creation(’clipper’, cs=’

HSV’, rgb_like=True)
9 clip_train_RGB, clip_val_RGB, clip_test_RGB = bam.norm_dataset_creation(’clipper’, cs=’RGB’,

rgb_like=True)
10
11 #grasper
12 grasp_train_HSV, grasp_val_HSV, grasp_test_HSV = bam.norm_dataset_creation(’grasper’, cs=’HSV’,

rgb_like=False)
13 grasp_train_HSVrgb, grasp_val_HSVrgb, grasp_test_HSVrgb = bam.norm_dataset_creation(’grasper’, cs

=’HSV’, rgb_like=True)
14 grasp_train_RGB, grasp_val_RGB, grasp_test_RGB = bam.norm_dataset_creation(’grasper’, cs=’RGB’,

rgb_like=True)
15
16 #hook
17 hook_train_HSV, hook_val_HSV, hook_test_HSV = bam.norm_dataset_creation(’hook’, cs=’HSV’,

rgb_like=False)
18 hook_train_HSVrgb, hook_val_HSVrgb, hook_test_HSVrgb = bam.norm_dataset_creation(’hook’, cs=’

HSV’, rgb_like=True)
19 hook_train_RGB, hook_val_RGB, hook_test_RGB = bam.norm_dataset_creation(’hook’, cs=’RGB’,

rgb_like=True)

Listing A2.11: The training
1 datasetdic = {’clipperHSV’:[clip_train_HSV,clip_val_HSV,clip_test_HSV],
2 ’clipperHSVrgb’:[clip_train_HSVrgb,clip_val_HSVrgb,clip_test_HSVrgb],
3 ’clipperRGB’:[clip_train_RGB,clip_val_RGB,clip_test_RGB],
4 ’scissorsHSV’:[sciss_train_HSV,sciss_val_HSV,sciss_test_HSV],
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5 ’scissorsHSVrgb’:[sciss_train_HSVrgb,sciss_val_HSVrgb,sciss_test_HSVrgb],
6 ’scissorsRGB’:[sciss_train_RGB,sciss_val_RGB,sciss_test_RGB],
7 ’grasperHSV’:[grasp_train_HSV,grasp_val_HSV,grasp_test_HSV],
8 ’grasperHSVrgb’:[grasp_train_HSVrgb,grasp_val_HSVrgb,grasp_test_HSVrgb],
9 ’grasperRGB’:[grasp_train_RGB,grasp_val_RGB,grasp_test_RGB],
10 ’hookHSV’:[hook_train_HSV,hook_val_HSV,hook_test_HSV],
11 ’hookHSVrgb’:[hook_train_HSVrgb,hook_val_HSVrgb,hook_test_HSVrgb],
12 ’hookRGB’:[hook_train_RGB,hook_val_RGB,hook_test_RGB]}
13
14 tools = [’scissors’, ’clipper’, ’grasper’, ’hook’]
15 lrs = [8e−05, 1e−4, 1e−3]
16 css = [’HSV’, ’RGB’, ’HSVrgb’]
17
18 for tool in tools:
19 for lr in lrs:
20 for cs in css:
21 neptune_logger = NeptuneLogger(api_key=’<own␣neptune␣key’,
22 project_name=’<own␣project␣name>’,
23 experiment_name=’<own␣experiment␣name>’, # Optional,
24 tags=[<list of own tags>] # Optional,
25 )
26
27 checkpoint_callback = ModelCheckpoint(monitor=’avg_val_loss’,
28 verbose=True,
29 dirpath=’/workspace/app/notebooks/checks/z’,
30 filename=f’{neptune_logger.experiment.id}−{cs}−{

tool}’’−{val_roc_auc:.2f}−{avg_val_loss:.2f}’)
31
32 lr_monitor = LearningRateMonitor(logging_interval=’epoch’)
33
34 train, val, test = datasetdic[f’{tool}{cs}’]
35
36 model = bam.lightningTinyCBR(train_set=train,val_set=val,test_set=test, batch_size=64,

learning_rate=lr)
37
38 trainer = pl.Trainer(callbacks=[EarlyStopping(monitor=’avg_val_loss’, patience = 30),

checkpoint_callback, lr_monitor],
39 gpus=1,
40 logger=neptune_logger,
41 auto_lr_find=False)
42
43 trainer.fit(model)
44
45 del(model)
46 del(trainer)
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A2.3 Testing

Listing A2.12: Imports
1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4 import torch.optim as optim
5 import torchvision
6 import matplotlib.pyplot as plt
7 import pandas as pd
8 import re
9 import cv2
10 import albumentations
11 import albumentations.pytorch
12 import time
13 import numpy as np
14 import pytorch_lightning as pl
15 import neptune
16 import time
17 from tqdm import tqdm
18 from pytorch_lightning.callbacks import ModelCheckpoint
19 from pytorch_lightning.metrics.functional import auroc
20 from pytorch_lightning.metrics.functional import accuracy
21 from pathlib import Path
22 from torch.utils.data import Dataset
23 from torch.utils.data import DataLoader
24 from torch.utils.data import random_split
25 from pytorch_lightning.callbacks.early_stopping import EarlyStopping
26 from pytorch_lightning import Trainer
27 from pytorch_lightning.loggers import NeptuneLogger
28 from pytorch_lightning.callbacks import LearningRateMonitor
29
30 import ba_modules as bam
31 from cxdata.cholec80.utils import load_cholec80_as_dataframe
32
33 %config Completer.use_jedi = False

Listing A2.13: Hyperparameters
1 # ’scissors’, ’clipper’, ’grasper’, ’hook’
2 tool = ’grasper’
3
4 # ’HSV’,’RGB’, for ’HSVrgb’ choose colorspace = ’HSV’ and rgb_like = <True> to normalize it non

circular
5 colorspace = ’HSV’
6
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7 # False for circular normalization, True for non circular normalization
8 rgb_like = True
9
10 checkpoint = <path to desired checkpoint>

Listing A2.14: Preparation
1 train_set,val_set,test_set = bam.norm_dataset_creation(tool=tool, cs=colorspace, rgb_like=rgb_like)
2
3 neptune_logger = NeptuneLogger(
4 api_key=’<own␣key>’,
5 project_name=’<own␣project␣name>’,
6 experiment_name=f’<own␣experiment␣name>’, # Optional,
7 tags=[’<list␣of␣tags>’] # Optional,
8 )
9
10 model = bam.lightningTinyCBR(train_set,val_set,test_set)
11
12 trainer = pl.Trainer(gpus=1, logger=neptune_logger)
13
14 model = model.load_from_checkpoint(f’{checkpoint}’, train_set=train_set, val_set=val_set, test_set=

test_set, learning_rate=1e−4)

Listing A2.15: Testing
1 trainer.test(model)
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